IT PARK
    Most Popular

    Tesla and BMW lead supply chain renaissance with blockchain

    Jun 15, 2025

    6 Ways to Make Money for IoT Products

    Jun 04, 2025

    Five effective business models of Internet of Things

    Jun 11, 2025

    IT PARK IT PARK

    • Home
    • Encyclopedia

      What is a port?

      Jul 01, 2025

      What to do with a laptop blue screen

      Jun 30, 2025

      Is it better to save the file as a zip archive or as the original file?

      Jun 29, 2025

      What is cross-site scripting attack

      Jun 28, 2025

      The difference between SLR and digital cameras

      Jun 27, 2025
    • AI

      Can AI Painting Replace Human Painters

      Jul 01, 2025

      Who owns the copyright of the paintings created by AI for you?

      Jun 30, 2025

      How does the meta universe "feed" artificial intelligence models?

      Jun 29, 2025

      Amazon Bedrock: How to Stay Competitive in Generative AI

      Jun 28, 2025

      AGI Avengers! Google Brain and DeepMind officially announced a merger

      Jun 27, 2025
    • Big Data

      Transforming the construction industry through digital twin modeling

      Jul 01, 2025

      How does big data start? From small data to big data

      Jun 30, 2025

      What is big data? What can big data do?

      Jun 29, 2025

      Benefits of big data analysis and how to analyze big data

      Jun 28, 2025

      Six benefits of big data for enterprises

      Jun 27, 2025
    • CLO

      Essential factors to consider for a successful cloud transformation journey

      Jul 01, 2025

      Building a Smart City: The Importance of Cloud Storage

      Jun 30, 2025

      SaaS sprawl: meaning, hazard, status quo and mitigation plan

      Jun 29, 2025

      What are the advantages and disadvantages of hybrid cloud?

      Jun 28, 2025

      Cloud computing has many applications in our daily life, what are the main ones?

      Jun 27, 2025
    • IoT

      6 Ways the Internet of Things is Transforming Agriculture

      Jul 01, 2025

      4 Big Challenges for IoT Data Collection and Management

      Jun 30, 2025

      Most enterprises expect a return on investment within one year of IoT deployment

      Jun 29, 2025

      What are the main applications of IoT in our real life?

      Jun 28, 2025

      IoT systems and why they are so important

      Jun 27, 2025
    • Blockchain

      Blockchain Common Consensus Mechanisms

      Jul 01, 2025

      How energy company Powerledger (POWR) is using blockchain to improve the world

      Jun 30, 2025

      Ten application scenarios for blockchain

      Jun 29, 2025

      What is a privacy coin? What is the difference between them and Bitcoin?

      Jun 28, 2025

      The difference between Bitcoin cash and Bitcoin

      Jun 27, 2025
    IT PARK
    Home » CLO » Cloud computing and data science, five steps to break through the flood of information
    CLO

    Cloud computing and data science, five steps to break through the flood of information

    Data scientists must move data from central servers to their systems for analysis, a time-consuming and complex process. Cloud computing has revolutionized the way organizations handle data by eliminating the need for physical servers and providing on-demand, scalable resources.
    Updated: May 31, 2025
    Cloud computing and data science, five steps to break through the flood of information

    The importance of data in making informed decisions cannot be overstated. In today's world, organizations rely on data to drive their strategies, optimize their operations, and gain a competitive advantage. However, as the volume of data grows exponentially, developers in organizations and even individual projects may face the challenge of effectively scaling their data science projects to handle the flood of information.

    To address this issue, we discuss five key components that help successfully scale data science projects: using APIs for data collection, storing data in the cloud, data cleansing and pre-processing, automation using Airflow, and data visualization.

    These components are critical to ensure that organizations capture more data and store it securely in the cloud for easy access, clean and process data using pre-written scripts, automate processes, and leverage data visualization by connecting to interactive dashboards with cloud-based storage.

    To understand the importance, let's start by looking at how you might scale your project before implementing the cloud.

    Before implementing cloud computing, organizations had to rely on local servers to store and manage data. Data scientists must move data from a central server to their systems for analysis, a time-consuming and complex process. Setting up and maintaining local servers can be very expensive and require ongoing maintenance and backups.

    Cloud computing has revolutionized the way organizations handle data by eliminating the need for physical servers and providing on-demand, scalable resources.

    Now, let's get started with data capture to scale your data science projects.

       1. Using APIs for data collection

    In every data project, the first phase is data acquisition. Providing continuous, up-to-date data for projects and models is critical to improving the performance of your models and ensuring their relevance. One of the most effective ways to collect data is through APIs, which allow you to programmatically access and retrieve data from a variety of sources.

    APIs have become a popular way to collect data due to their ability to provide data from a wide range of sources including social media platforms or financial institutions and other web services.

    Youtube API
    [URL]: https://developers.google.com/youtube/v3

    In this video, Google Colab is used for coding and the Requests library is used for testing. The YouTube API is used to retrieve the data and the response obtained from the API call is obtained.

    The data was found to be stored in the items key, by parsing the data and creating a loop to browse through the items. A second API call was made and the data was saved to a Pandas DataFrame. This is a good example of using the API in a data science project.

    Quandl's API
    [URL]: https://demo.quandl.com/

    In Data Vigo's video, it is explained how to install Quandl using Python, find the required data on Quandl's official website, and use the API to access financial data. This approach makes it easy to provide the necessary information for your financial data projects.

    Rapid API
    [URL]: https://rapidapi.com/

    To find the right API for your needs, you can explore platforms like RapidAPI, which offers a wide range of APIs covering a variety of domains and industries. by leveraging these APIs, you can ensure that your data science projects are always provided with the most up-to-date data so that you can make informed, data-driven decisions.

       2. Store data in the cloud

    In a data science project, it is critical to ensure that data is secure and easily accessible to authorized users. There is a need to ensure that data is both secure from unauthorized access and easily available to authorized users, allowing for smooth operations and efficient collaboration among team members.

    Some of the popular cloud-based databases include Amazon RDS, Google Cloud SQL, and Azure SQL Database. these solutions can handle large amounts of data. Well-known applications that use these cloud-based databases include ChatGPT, which runs on Microsoft Azure and demonstrates the power and effectiveness of cloud storage.

    Google Cloud SQL
    [URL]: https://cloud.google.com/sql

    To set up a Google Cloud SQL instance, follow these steps.

    First, go to the Cloud SQL instance page, then click "Create Instance" and then click "Select SQL Server".
    After entering the instance ID, enter the password. Select the database version you want to use, and then select the region where the instance will be hosted.
    Update the settings to your liking.

    By leveraging a cloud-based database, you can ensure that your data is securely stored and easily accessible, so that your data science projects run smoothly and efficiently.

    cloud computing Data Information
    Previous Article Smart Museums: 6 IoT Applications for Museums and Galleries
    Next Article Transforming the construction industry through digital twin modeling

    Related Articles

    CLO

    What is cloud computing?

    Jun 09, 2025
    CLO

    How do I evaluate cloud providers? What are the cloud outage handling strategies?

    Jun 25, 2025
    Big Data

    What is data visualization? How do I do it?

    Jun 07, 2025
    Most Popular

    Tesla and BMW lead supply chain renaissance with blockchain

    Jun 15, 2025

    6 Ways to Make Money for IoT Products

    Jun 04, 2025

    Five effective business models of Internet of Things

    Jun 11, 2025
    Copyright © 2025 itheroe.com. All rights reserved. User Agreement | Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.